The Structure and Electron Density of sym-Dibenzo-1,5-cyclooctadiene-3,7-diyne by X-ray Analysis at Three Different Temperatures

By Riccardo Destro, Tullio Pilati and Massimo Simonetta
Istituto di Chimica Fisica e Centro CNR, Università, Via Golgi 19, 20133 Milano, Italy

(Received 10 June 1976; accepted 16 July 1976)

Abstract

The crystal structure of the title compound (systematic name 5,6,11,12-tetradehydrodibenzo $[a, e]$ cyclooctene, $\mathrm{C}_{16} \mathrm{H}_{8}$) has been determined at 290,218 and 113 K . Considerable contraction of cell parameters occurs on cooling, and comparison of bond lengths at the three temperatures provides direct evidence of the apparent bond shortening due to thermal motion. Bond distances agree well after correction according to a rigid-body model. The molecules pack in such a way that the benzene rings are slightly bent out of the plane of the four $\mathrm{C}_{s p}$ atoms. The distance between the triple bonds is $2.617 \AA$ at 113 K , and the distortion of the acetylene linkages from the normal linear arrangement is 24.3°. Difference maps reveal an asymmetric distribution of electron density around the triple bonds, with a slight accumulation of charge inside the ring. Experimental findings are confirmed by quantum-mechanical calculations.

Introduction

Correction of intramolecular interatomic distances foreshortened by rigid-body motion is today a routine procedure in crystallographic studies. However, owing to the lack of an absolute criterion to gauge the adequacy of the rigid-body approximation for the molecule under study, no warranty exists that the corrections do not suffer from systematic errors.

To estimate the reliability of these corrections, applied on the basis of the TLS analysis (Schomaker \& Trueblood, 1968) to the room-temperature data of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (SDCD), we have determined the structure at two lower temperatures, 218 and 113 K . The agreement between the corrected values of the bond lengths at 290 and 218 K and those found at 113 K (only slightly affected by thermal motion) can be assumed to be a measure of the reliability of the proposed rigid-body model. It should be pointed out that usual evaluations indicate that SDCD behaves as a rigid body only to a first approximation, since the room-temperature data analysis gives the root mean square residue $\Delta U_{\text {RMS }}=$ $\left\langle\left(U_{\text {obs }}-U_{\text {calc }}\right)^{2}\right\rangle^{1 / 2}$ a value equal to $2 \sigma_{\text {RMS }}\left(U_{\text {obs }}\right)$. The results of the present study show that even under such circumstances the thermal corrections can be safely applied.

Low-temperature data were collected also to elucidate, at least in a qualitative way, the electrondensity distribution at the bonds between atoms of the highly strained central ring of the molecule. An account of the molecular geometry at room temperature has been given (Destro, Pilati \& Simonetta, 1975).

Experimental

A sample of the substance, kindly supplied by Professor F. Sondheimer, was recrystallized from tetrahydrofuran by slow evaporation at $-10^{\circ} \mathrm{C}$; a unique, yellow, prismatic crystal, with cross-section about $0.32 \times 0.30 \mathrm{~mm}$ and height about 0.75 mm , was obtained. It was cut to yield two specimens of approximately equal volume. The first produced the data set at room temperature (290 K); after several hours of exposure to air and X-rays it showed a gradual darkening, indicating noticeable decomposition at this temperature. Hence the second crystal was used for the data collection at 218 and 113 K , and for the determination of cell parameters at five different temperatures in the range 113-290 K. No decomposition was detected in the second crystal below 250 K .
Both samples were glued on the top of Lindemann glass capillaries. After the data collection at 218 K , a too fast cooling to a lower temperature cracked the crystal in the region of the glue. The larger portion was recovered and mounted on a new glass fibre; the volume of the lost slice was less than a tenth of the total volume.

Data were collected on a computer-controlled Syntex $P \overline{1}$ diffractometer equipped with the low-temperature LT-1 device (Syntex Analytical Instruments). The temperatures were measured by placing the junction of an accurately calibrated thermocouple in the same position as the crystal. The temperature variation in reproducing the same cooling conditions was less than 1 K , and variations in the gas stream did not exceed 2 K within a cubic volume of 2 mm side. An inclusive
error of $\pm 5 \mathrm{~K}$ may be safely associated with each temperature measurement.

The graphite-monochromated radiations used for intensity measurements were $\mathrm{Cu} K \alpha(\lambda=1.5418 \AA)$ at room temperature $\left(2 \theta_{\text {max }}=140^{\circ}\right)$ and Mo $K \alpha$ $(\lambda=0.7107 \AA)$ at 218 and $113 \mathrm{~K}\left(2 \theta_{\text {max }}=54.9^{\circ}\right)$. A variable rate $\theta-2 \theta$ scan technique was employed; background was monitored for a time equal to one-half the scan time at each extremum. Check reflexions indicated a general downward trend in the intensity at 290 K , whereas no appreciable drift was noticed at the lower temperatures. Observational variances $\sigma^{2}(I)$ included counting statistics plus an additional term, $(0.03 S)^{2}$, where S is the scan count. Intensities and their e.s.d.'s were corrected for Lorentz and polarization effects, but not for absorption; to those collected at room temperature a decay correction linearly dependent on time was applied.

Cell dimensions

After the collection of the three sets of intensities, 30 reflexions with $36<2 \theta<46^{\circ}$ were accurately centred at five different temperatures. From the least-squares fit to their $\sin ^{2} \theta$ measurements, cell parameters at each temperature were obtained; the values at 290, 218 and 113 K are listed in Table 1, with other crystal data. The dependence of the cell parameters on the absolute temperature T may be expressed by:

$$
\begin{aligned}
& a=a_{0}\left(0.9757+41.46 \times 10^{-6} T+0.1462 \times 10^{-6} T^{2}\right) ; \\
& b=b_{0}\left(0.9952+16.74 \times 10^{-6} T\right) ; \\
& c=c_{0}\left(0.9883+23.53 \times 10^{-6} T+0.0580 \times 10^{-6} T^{2}\right) ; \\
& \beta=\beta_{0}\left(1.0109-26.30 \times 10^{-6} T-0.0398 \times 10^{-6} T^{2}\right) ; \\
& V=V_{0}\left(0.9588+85.43 \times 10^{-6} T+0.1956 \times 10^{-6} T^{2}\right),
\end{aligned}
$$

where the subscript 0 refers to 290 K . These equations were obtained by a least-squares treatment of the five sets of parameters, and are represented in Fig. 1. Linear and volumetric expansion coefficients may be derived from the equations; their average values in the range

Table 1. Crystal data

$113-290 \mathrm{~K}$, multiplied by 10^{6}, are $\alpha_{a}=101, \alpha_{b}=17$, $\alpha_{c}=47$, and $\alpha_{V}=167 \mathrm{~K}^{-1}$.

Refinement

The function minimized in the refinement of the three sets of data was $\Sigma w\left(\left|F_{o}\right|-k\left|F_{c}\right|\right)^{2}$, with weights $w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$. In the final cycles, 178 parameters were included in a single matrix and adjusted: coordinates and anisotropic temperature parameters for the 16 C atoms, coordinates and isotropic temperature factors for the eight H atoms, a scale factor and a secondary extinction parameter [Larson (1967), equation (3)]. Atomic form factors for C were from Cromer \& Waber (1965) and for H from Stewart, Davidson \& Simpson (1965). Final values for the parameters of the C atoms are given in Table 2, and of the H atoms in Table 3. Observed and calculated structure factors are given in Table 4.* Final agreement indices are listed in Table 5. The numbering scheme is shown in Fig. 2.

Analysis of the thermal motion

The anisotropic thermal parameters for all 16 C atoms were used to determine the rigid-body motion of the SDCD molecule (Schomaker \& Trueblood, 1968). The results are given in Table 6. At each temperature the

[^0]

Fig. 1. Variation of cell parameters with temperature (K). For each parameter, the value at 290 K is set equal to unity.
root mean square residue $\Delta U_{\text {RMS }}$ is approximately equal to $2 \sigma_{\text {RMs }}\left(U_{\text {obs }}\right)$: this seems to indicate that the molecule behaves as a rigid body only to a first approximation. However, in view of the substantial agreement between the corrected values of the bond
lengths at room temperature and the corresponding ones found at 113 K (see next section), the rigid-body model seems in this instance a fairly good approximation. Hence, a more adequate estimate of the fit is perhaps the average disagreement index

Table 2. Final coordinates and thermal parameters for the carbon atoms

Fractional coordinates are $\times 10^{5}$, thermal parameters $\times 10^{4}$. The anisotropic temperature coefficients are of the form:

$$
T_{l}=\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)\right]
$$

	x	y	z	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
290 K									
C(1)	40943 (31)	33953 (14)	58381 (11)	391 (6)	77 (1)	54 (1)	13 (2)	-6 (2)	-8(1)
C(2)	56709 (33)	41892 (14)	60912 (12)	511 (7)	69 (1)	59 (1)	7 (2)	-27(2)	-16(1)
C(3)	76446 (32)	41896 (13)	56546 (12)	458 (7)	66 (1)	62 (1)	-31 (2)	-31(2)	-4 (1)
C(4)	81197 (29)	33982 (12)	49572 (11)	376 (5)	65 (1)	59 (1)	-33 (2)	-14(2)	1 (1)
C(5)	68469 (23)	17160 (12)	39963 (10)	269 (4)	65 (1)	49 (1)	-16 (2)	2 (1)	2 (1)
C(6)	63295 (22)	9025 (12)	35372 (9)	258 (4)	68 (1)	47 (1)	-6 (2)	7 (1)	1 (1)
C(7)	53726 (26)	-8510 (12)	25881 (10)	338 (5)	72 (1)	49 (1)	-2 (2)	-3(2)	-6(1)
C(8)	38411 (28)	-16787 (13)	23764 (10)	414 (6)	65 (1)	49 (1)	-6 (2)	-17(2)	-8(1)
C(9)	18509 (28)	-16755 (13)	28079 (11)	387 (6)	66 (1)	55 (1)	-36(2)	-33(2)	2 (1)
C(10)	13444 (26)	-8457 (13)	34671 (10)	311 (5)	75 (1)	50 (1)	-31(2)	-13(1)	5 (1)
C(11)	25623 (21)	8934 (12)	43687 (9)	257 (4)	72 (1)	46 (1)	-2 (2)	0 (1)	1 (1)
C(12)	30761 (23)	17089 (12)	48254 (9)	272 (4)	72 (1)	46 (1)	2 (2)	4 (1)	-1(1)
C(13)	45202 (23)	25962 (11)	51440 (9)	319 (4)	61 (1)	44 (1)	7 (2)	-14(1)	0 (1)
C(14)	65757 (23)	25986 (11)	46921 (9)	311 (4)	55 (1)	46 (1)	-6 (2)	-14 (1)	4 (1)
C(15)	49067 (23)	-48 (11)	32380 (9)	287 (4)	58 (1)	40 (1)	-4 (2)	-10(1)	3 (1)
C(16)	28404 (22)	-74 (11)	36912 (9)	276 (4)	60 (1)	40 (1)	-6 (2)	$-10(1)$	3 (1)
218 K									
C(1)	41157 (26)	33973 (12)	58386 (10)	247 (4)	53 (1)	39 (1)	12 (2)	-2(1)	-5 (1)
C(2)	57042 (27)	41945 (13)	60898 (11)	340 (5)	47 (1)	39 (1)	7 (2)	-13(2)	-10(1)
C(3)	76998 (27)	41976 (12)	56532 (10)	307 (5)	43 (1)	44 (1)	-25 (2)	-23 (2)	-1 (1)
C(4)	81686 (24)	33996 (12)	49545 (10)	238 (4)	45 (1)	39 (1)	-21(2)	-8(1)	2 (1)
C(5)	68827 (20)	17062 (11)	39936 (9)	154 (3)	47 (1)	34 (1)	-11(2)	4 (1)	3 (1)
C(6)	63561 (20)	8905 (11)	35344 (9)	161 (3)	48 (1)	31 (1)	-1 (2)	8 (1)	1 (1)
C(7)	53808 (23)	-8670 (12)	25811 (9)	206 (4)	51 (1)	33 (1)	3 (2)	1 (1)	-3 (1)
C(8)	38285 (24)	-17009 (12)	23698 (9)	277 (5)	45 (1)	34 (1)	0 (2)	-10(1)	-6 (1)
C(9)	18262 (24)	-16957 (12)	28047 (10)	252 (4)	43 (1)	38 (1)	-27 (2)	-23 (1)	2 (1)
C(10)	13248 (23)	-8625 (12)	34683 (10)	193 (4)	51 (1)	35 (1)	-18(2)	-8(1)	4 (1)
C(11)	25667 (20)	8802 (12)	43671 (9)	153 (3)	51 (1)	32 (1)	-2 (2)	3 (1)	3 (1)
C(12)	30861 (21)	17006 (12)	48266 (9)	169 (3)	5.1 (1)	32 (1)	5 (2)	5 (1)	1 (1)
C(13)	45393 (21)	25956 (11)	51439 (8)	201 (4)	41 (1)	31 (1)	2 (2)	-10(1)	1 (1)
C(14)	66165 (21)	25962 (11)	46900 (8)	202 (4)	37 (1)	31 (1)	-1 (2)	-9 (1)	2 (1)
C(15)	49190 (21)	-197 (11)	32331 (9)	181 (4)	40 (1)	28 (1)	-2 (1)	-7(1)	3 (1)
C(16)	28412 (20)	-211(11)	36908 (8)	180 (4)	40 (1)	27 (1)	-3(1)	-7(1)	3 (1)
113 K									
C(1)	41438 (21)	33995 (10)	58393 (8)	132 (3)	30 (1)	20 (1)	7 (1)	0 (1)	-1(1)
C(2)	57532 (21)	42024 (10)	60888 (9)	185 (4)	24 (1)	20 (1)	5 (1)	-7 (1)	-5 (1)
C(3)	77724 (21)	41992 (10)	56500 (8)	166 (4)	23 (1)	23 (1)	-14(1)	-12(1)	0 (1)
C(4)	82393 (20)	33957 (10)	49494 (8)	130 (4)	25 (1)	20 (1)	-8(1)	-4 (1)	2 (1)
C(5)	69250 (18)	16962 (9)	39896 (8)	85 (3)	26 (1)	19 (1)	-5 (1)	2 (1)	3 (1)
C(6)	63836 (18)	8737 (9)	35272 (8)	89 (3)	27 (1)	17 (1)	2 (1)	5 (1)	3 (1)
C(7)	53847 (19)	-8853 (10)	25717 (8)	114 (3)	28 (1)	17 (1)	3 (1)	0 (1)	0 (1)
C(8)	38145 (20)	-17232 (10)	23605 (8)	153 (3)	24 (1)	18 (1)	2 (1)	-8(1)	-2 (1)
C(9)	17889 (20)	-17185 (10)	28022 (8)	133 (3)	24 (1)	21 (1)	-15 (1)	-14(1)	3 (1)
C(10)	12947 (19)	-8824 (10)	34704 (8)	108 (3)	28 (1)	17 (1)	-8(1)	-5 (1)	3 (1)
C(11)	25694 (17)	8669 (10)	43702 (7)	84 (3)	29 (1)	17 (1)	0 (1)	4 (1)	3 (1)
C(12)	30988 (18)	16920 (10)	48283 (7)	93 (3)	29 (1)	17 (1)	4 (1)	4 (1)	1 (1)
C(13)	45698 (18)	25903 (9)	51423 (7)	118 (3)	22 (1)	17 (1)	0 (1)	-8(1)	2 (1)
C(14)	66626 (18)	25899 (9)	46868 (7)	115 (3)	21 (1)	16 (1)	2 (1)	-6(1)	2 (1)
C(15)	49272 (18)	-381 (9)	32282 (8)	103 (3)	22 (1)	16 (1)	-2(1)	-5 (1)	2 (1)
C(16)	28381(18)	-394 (9)	36895 (7)	103 (3)	21 (1)	15 (1)	0 (1)	-3 (1)	2 (1)

$\langle | U_{\text {obs }}-U_{\text {catc }}\left|/\left|U_{\text {obs }}\right|\right\rangle$, and values less than 10% for this quantity can be assumed as indicative of a satisfactory fit.

The librational motion is strongly anisotropic: as expected, the principal axis of libration is nearly along the axis of minimum inertia (axis N in Fig. 2). The moment of inertia around this axis is eight times smaller than that around the maximum inertial axis L; the inertia about the third axis (M) is very similar in magnitude to

Table 3. Coordinates $\left(\times 10^{4}\right)$ and isotropic temperature coefficients ($\times 10$) for the hydrogen atoms

	x	y	z	B
290 K				
H(1)	2718 (29)	3365 (14)	6144 (12)	65 (4)
H(2)	5351 (27)	4742 (15)	6557 (12)	67 (4)
H(3)	8807 (28)	4771 (14)	5855 (12)	70 (4)
H(4)	9624 (28)	3413 (14)	4654 (11)	67 (4)
H(7)	6853 (27)	-831(13)	2247 (11)	63 (4)
H(8)	4191 (26)	-2296(13)	1924 (11)	59 (4)
H(9)	792 (27)	-2273(13)	2666 (10)	60 (4)
H(10)	-77(25)	-840 (13)	3795 (10)	57 (4)
218 K				
H(1)	2713 (24)	3379 (12)	6167 (9)	42 (3)
H (2)	5389 (24)	4715 (12)	6565 (10)	43 (3)
H(3)	8815 (26)	4762 (13)	5848 (11)	50 (4)
H(4)	9615 (24)	3410 (12)	4635 (9)	43 (3)
H (7)	6822 (24)	-870 (12)	2271 (10)	41 (3)
$\mathrm{H}(8)$	4169 (22)	-2298(12)	1922 (10)	38 (3)
H(9)	770 (24)	-2269 (12)	2653 (9)	42 (3)
H(10)	-88(25)	-843 (12)	3812 (10)	44 (3)
113 K				
H(1)	2728 (23)	3381 (11)	6157 (9)	26 (3)
H(2)	5440 (23)	4743 (12)	6570 (10)	30 (3)
H(3)	8901 (26)	4769 (13)	5821 (10)	36 (3)
H(4)	9722 (23)	3388 (11)	4643 (9)	26 (3)
H(7)	6842 (23)	-885 (11)	2260 (9)	25 (3)
H(8)	4150 (22)	-2330 (11)	1911 (9)	24 (3)
H(9)	696 (24)	-2304 (12)	2657 (9)	29 (3)
H(10)	-141 (22)	-862 (11)	3805 (9)	23 (3)

Table 5. Agreement indices of least-squares refinement
$\left.\begin{array}{lccr} & 290 \mathrm{~K} & 218 \mathrm{~K} & 113 \mathrm{~K} \\ k \text { (scale factor) } & 18.281(7) & 6.221(2) & 6.730(2) \\ g \text { (isotropic extinction } \\ \text { coefficient) } \times 10^{7}\end{array}\right)$
that about L, being $<15 \%$ smaller. The translational motion exhibits only a slight anisotropy at each temperature; the minimum molecular translation occurs in a direction nearly parallel to \mathbf{b}, i.e. the axis which undergoes the minimum variation with the temperature (Fig. 1).

As the temperature goes down from 290 to 113 K , the root mean square amplitudes of the translational and librational displacements decrease to about onethird of the original.

Molecular structure

The bond distances and angles of SDCD are listed in Tables 7 and 8 respectively. The correction for apparent bond shortening due to thermal motion is very small at 113 K , but appreciable at the other two temperatures. As expected from the results of the rigidbody TLS analysis, the correction is largest for the bonds perpendicular to the axis of minimum inertia, whereas the change in the triple-bond lengths is only marginally significant.

The comparison of the three sets of corrected values (Table 7) shows that the agreement is satisfactory: even if some of the bond lengths at 290 K appear either undercorrected or systematically shortened, no difference between two corresponding values at 290 and 113 K is greater than three times the individual e.s.d. The greatest difference between corresponding values at 218 and 113 K is also $<3 \sigma$.

The precision of the three structure determinations is shown by the agreement of the bond angles (Table 8). Even for angles involving H atoms, the difference between each individual value and the average rarely exceeds the estimated standard deviation.

The molecular strain, especially at the central eightmembered ring, is clearly evidenced by the deviation of bond distances and angles from their normal values. Of particular relevance are (i) the lengthening of the $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{2}}$ inner bonds $\mathrm{C}(13)-\mathrm{C}(14)$ and $\mathrm{C}(15)-\mathrm{C}(16)$ ($1.431 \AA$ at 113 K before thermal correction), and (ii)

Fig. 2. 40% probability thermal ellipsoids at 113 K (Johnson, 1965). The molecule is viewed along L, the direction corresponding to the maximum moment of inertia.

Table 6. Rigid-body-motion parameters
The tensors are referred to a Cartesian coordinate system defined by unit vectors $\hat{\mathbf{a}}^{*}, \hat{\mathbf{b}}, \hat{\mathbf{a}}^{*} \times \hat{\mathbf{b}}$. Standard deviations are given in parentheses.

Fig. 3. A drawing of the structure viewed down a.
the deviation, $24 \cdot 3^{\circ}$, of the acetylene linkages from linearity. The same trend is present in 1,5-cyclooctadiyne for which some structural details, obtained by Rømming by X-ray diffraction at $-170^{\circ} \mathrm{C}$, are reported by Kloster-Jensen \& Wirz (1975). In the latter compound the contact between the triple bonds $(2.597$ vs $2.617 \AA$ in SDCD) is mainly relieved by a lengthening of the two $C_{s p^{3}}-C_{s p^{3}}$ bonds ($1.570 \AA$), and consequently the deformation of the angles at the $\mathrm{C}_{s p}$ atoms is less pronounced than in our molecule (20.7 vs $24 \cdot 3^{\circ}$).

Fig. 4. A drawing of two molecules related by a centre of symmetry, viewed perpendicular to their planes.

Table 7. Bond lengths (\AA)

	290 K		218 K		113 K	
	Uncorrected	Corrected	Uncorrected	Corrected	Uncorrected	Corrected
(a) $\mathrm{C}-\mathrm{C}$						
$\mathrm{C}(1)-\mathrm{C}(2)$	1.392	1.395	1.391	1.393	1.394	1.396
$\mathrm{C}(2)-\mathrm{C}(3)$	1.369	1.376	1.374	1.378	1.380	1.382
$\mathrm{C}(3)-\mathrm{C}(4)$	1.390	1.393	1.393	1.395	1.396	1.397
$\mathrm{C}(4)-\mathrm{C}(14)$	1.387	1.390	1.385	1.387	1.388	1.389
$\mathrm{C}(14)-\mathrm{C}(5)$	1.442	1.445	1.446	1.448	1.446	1.447
$\mathrm{C}(5)-\mathrm{C}(6)$	1.199	1.200	1.199	1.200	1.205	1.206
$\mathrm{C}(6)-\mathrm{C}(15)$	1.443	1.446	1.445	1.447	1.444	1.445
$\mathrm{C}(15)-\mathrm{C}(7)$	1.388	1.392	1.388	1.390	1.389	1.390
C (7)-C(8)	1.388	1.391	1.394	1.396	1.396	1.397
$\mathrm{C}(8)-\mathrm{C}(9)$	1.375	1.381	1.376	1.381	1.385	1.387
$\mathrm{C}(9)-\mathrm{C}(10)$	1.389	1.392	1.392	1.395	1.395	1.396
$\mathrm{C}(10)-\mathrm{C}(16)$	1.386	1.389	1.389	1.391	1.392	1.393
$\mathrm{C}(16)-\mathrm{C}(11)$	1.441	1.444	1.437	1.440	1.442	1.443
$\mathrm{C}(11)-\mathrm{C}(12)$	1.198	1.200	1.202	1.204	1.203	1.203
$\mathrm{C}(12)-\mathrm{C}(13)$	1.441	1.444	1.444	1.446	1.443	1.444
$\mathrm{C}(13)-\mathrm{C}(1)$	1.386	1.390	1.386	1.388	1.391	1.393
$\mathrm{C}(13)-\mathrm{C}(14)$	1.424	1.431	1.430	1.434	1.430	1.433
$\mathrm{C}(15)-\mathrm{C}(16)$	1.431	1.438	1.432	1.437	1.432	1.434
$\sigma(\mathrm{C}-\mathrm{C})$	0.0019-0.0027		0.0017-0.0023		0.0015-0.0018	
(b) $\mathrm{C}-\mathrm{H}$						
$\mathrm{C}(1)-\mathrm{H}(1)$	0.96		0.98		0.97	
$\mathrm{C}(2)-\mathrm{H}(2)$	0.95		0.93		0.95	
$\mathrm{C}(3)-\mathrm{H}(3)$	1.03		0.99		0.98	
$\mathrm{C}(4)-\mathrm{H}(4)$	1.02		1.00		1.00	
$\mathrm{C}(7)-\mathrm{H}(7)$	1.04		0.99		0.99	
$\mathrm{C}(8)-\mathrm{H}(8)$	0.99		0.97		0.98	
$\mathrm{C}(9)-\mathrm{H}(9)$	0.98		0.96		0.97	
$\mathrm{C}(10)-\mathrm{H}(10)$	0.99		1.00		1.00	
$\sigma(\mathrm{C}-\mathrm{H})$	0.016-0.018		0.014-0.016		0.013-0.015	

A feature of SDCD is the slight but significant nonplanarity of the molecules in the crystal (Table 9). The small deformation of the system from strict planarity occurs in such a way that benzene rings of molecules related by centres of symmetry (Fig. 3) attract each other, and consequently each molecule assumes a scarcely perceptible 'butterfly' shape. As shown in Fig. 4, the maximum overlap is between $\mathrm{C}(1)$ and $\mathrm{C}(8)$ (at $1-x,-y, 1-z$); their separation is $3.451,3.424$ and $3.397 \AA$ at 290,218 and 113 K respectively. The other closest contacts are $\mathrm{C}(10) \cdots \mathrm{C}(14), 3.462$, and $\mathrm{C}(12) \cdots \mathrm{C}(15), 3 \cdot 517 \AA$ (values at 113 K). The distance between the planes passing through the $\mathrm{C}_{s p}$

Table 8. Bond angles (${ }^{\circ}$)

	290 K	218 K	113 K	Average
(a) $\mathrm{C}-\widehat{\mathrm{C}}-\mathrm{C}$				
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)$	$120 \cdot 1$	$120 \cdot 1$	119.9	120.0
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 3$	120.5	120.4	120.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.9	120.5	120.7	$120 \cdot 7$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$	119.9	$120 \cdot 1$	$120 \cdot 0$	$120 \cdot 0$
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{C}(6)$	156.0	156.1	156.0	156.0
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	$155 \cdot 3$	155.4	155.3	155.3
$\mathrm{C}(15)-\mathrm{C}(7)-\mathrm{C}(8)$	$120 \cdot 2$	120.2	120.2	$120 \cdot 2$
C(7)-C(8)--C(9)	$120 \cdot 6$	120.5	$120 \cdot 5$	$120 \cdot 5$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.5	120.5	120.5	120.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(16)$	$120 \cdot 1$	$120 \cdot 1$	119.9	120.0
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	156.4	156.5	156.5	156.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	155.3	155.3	155.2	155.3
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	114.2	114.1	114.2	114.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(1)$	126.3	126.4	126.3	126.3
$\mathrm{C}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	119.5	119.5	119.6	119.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(5)$	114.5	114.4	114.4	114.4
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(5)$	$126 \cdot 1$	126.3	126.1	126.2
$\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	119.4	119.2	119.4	119.3
$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(16)$	114.2	114.0	114.1	114.1
$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(7)$	126.7	126.8	126.6	126.7
$\mathrm{C}(7)-\mathrm{C}(15)-\mathrm{C}(16)$	119.1	119.2	119.3	119.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	114.1	114.2	114.3	114.2
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(10)$	126.4	126.3	126.0	126.2
$\mathrm{C}(10)-\mathrm{C}(16)-\mathrm{C}(15)$	119.4	119.5	119.7	119.5
Range of e.s.d.'s $\left(\times 10^{2}\right)$	11-16	11-14	9-12	
(b) $\mathrm{C}-\widehat{\mathrm{C}}-\mathrm{H}$				
$\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{H}(1)$	118.0	119.5	119.0	118.8
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	121.9	120.4	121.1	121.1
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3	118.4	118.8	118.8
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	$120 \cdot 3$	121.0	120.8	120.7
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.7	119.4	120.4	119.8
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.4	120.0	118.9	119.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.9	120.2	120.3	119.8
$\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{H}(4)$	121.2	119.6	119.7	120.2
$\mathrm{C}(15)-\mathrm{C}(7)-\mathrm{H}(7)$	118.7	119.1	118.9	118.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	121.1	120.7	120.9	120.9
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	$120 \cdot 1$	119.8	120.2	120.0
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	119.2	119.6	119.3	119.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	$120 \cdot 1$	120.0	120.4	120.2
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.4	119.5	119.0	119.3
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	121.4	122.9	122.4	122.2
$\mathrm{C}(16)-\mathrm{C}(10)-\mathrm{H}(10)$	118.4	117.0	117.8	117.7
Range of e.s.d.'s ($\times 10$)	9-10	8-9	7-9	

atoms of the two centrosymmetrically related molecules is $3.522 \AA$ at 113 K .

Electron density

Difference syntheses, calculated in the planes of the benzene rings and in the plane passing through the four $\mathrm{C}_{s p}$ atoms, are shown in Fig. 5; only reflexions with $\left|F_{c}\right| \geq \frac{1}{2} F_{o}$ were included in the calculations. The errors in the electron-density residues, derived from estimated σ 's of the observed data (Cruickshank, 1949), are 0.02, 0.05 and $0.04 \mathrm{e} . \AA^{-3}$ at 290,218 and 113 K respectively. Although the peaks, as expected, are much less pronounced at room temperature, the same essential features are present in all three maps.

As with the results of previous studies of benzene derivatives (O'Connell, Rae \& Maslen, 1966, and references therein), the difference densities in the regions of the benzene rings of SDCD are characterized by deep troughs in the centre of the rings, negative regions antisymmetric to the bonds, and excess of density between bonded atoms.

The most interesting feature of the maps concerns the central eight-membered ring, and particularly the region close to the triple bonds. At 113 K , two positive peaks of $0.26 \mathrm{e} \AA^{-3}$ show up in the ring plane; they are located at $0.5 \AA$ from the centre of the bonds, in a direction perpendicular to them and pointing towards the centre of the ring. As a counterpart, two negative residues appear outside the ring, with their minima $\left(-0.18\right.$ e $\left.\AA^{-3}\right) 0.2 \AA$ from the $\mathrm{C} \equiv \mathrm{C}$ bonds. The 113 K difference density section perpendicular to the bonds at their centres is shown in Fig. 6. A trough of $-0.2 \mathrm{e} \AA^{-3}$ in the centre of the triple bond as well as a peak of 0.1 e \AA^{-3} at $0.6 \AA$ from the centre of the bond were found by Irngartinger, Leiserowitz \& Schmidt (1970) in the room-temperature averaged electron density distribution of a molecule which consists of three identical $-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C} \equiv \mathrm{C}$ - subunits, $1: 2,5: 6,9: 10$-tribenzocyclo-dodeca-1,5,9-triene-3,7,11-triyne. In this compound the triple bonds do not show any significant distortion, the average value of the six $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}$ angles being 178.3°. According to the authors, the above-mentioned effects are due to 'errors inherent in the determination of atomic thermal parameters from room-temperature X ray data up to the usual $\sin \theta / \lambda$ limit of $0.66 \AA^{-1}$, Since the deep negative residue is found also in our lowtemperature difference density, it can be more generally stated that the main reason for the artefact is the spherical-atom scattering factor formalism, as confirmed by the theoretical study of Ruysink \& Vos (1974a) on an ethyne model structure.

On the other hand, the positive residues at $0.5 \AA$ from the triple bonds of SDCD are certainly not an artefact, as we have confirmed by an $a b$ initio SCF

(a)

(b)

(c)

Fig. 5. Sections of the ΔF syntheses showing residual electron density. The three sections of each composite, separated by chain-dotted lines, are defined by the planes through the benzene rings and the plane through the triple bonds. Contour levels at intervals of 0.05 e \AA^{-3} : solid lines positive; dashed lines negative; zero contours omitted. (a) 290 K ; (b) 218 K ; (c) 113 K .

Fig. 6. Difference density section perpendicular to the triple bonds at their centres at 113 K . Contours as in Fig. 5. The centre of the $\mathrm{C}(11)-\mathrm{C}(12)$ bond is represented by the shaded circle on the left, that of the $\mathrm{C}(5)-\mathrm{C}(6)$ bond by the shaded circle on the right.

Fig. 7. Section of the theoretical electron density perpendicular to the triple bond through the midpoint (e \AA^{-3} is \AA). The vertical direction is perpendicular to the ring plane; the left horizontal direction points toward the centre of the ring.

Table 9. Deviations $\left(\AA \times 10^{3}\right)$ from least-squares planes
Plane A is the best plane through $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(11)$ and $\mathrm{C}(12)$, all weighted equally; planes B and C are the best planes through the C atoms of the two benzene rings. Direction cosines $q_{l}\left(\times 10^{4}\right)$ are relative to the crystallographic axes; D is the origin-to-plane distance.

calculation with a STO 4-31G basis set (Hehre, Lathan, Ditchfield, Newton \& Pople, 1973) of the electron density of the 1,5 -cyclooctadiene-3,7-diyne system. The experimental values of the central-ring bond distances and angles of SDCD at 113 K , averaged assuming $D_{2 d}$ symmetry, were introduced in the calculation. As shown in Fig. 7, the theoretical electron density distribution around the triple bond at its centre is asymmetric, with slight accumulation of charge inside the ring. The greatest difference between the inner and the outer density occurs in the range $0.2-0.4 \AA$ from the bond, and amounts to $0.27 \mathrm{e} \AA^{-3}$. Although care must be taken in comparing observed densities with those calculated by quantum-mechanical methods (Ruysink \& Vos, 1974b), the above mentioned theoretical results support our experimental findings.

Another feature of the difference density in the central ring plane is that the positive residues on the $\mathrm{C}_{s p}-\mathrm{C}_{s p^{2}}$ bonds are systematically elongated outside the ring, with peak maxima $0.05-0 \cdot 10 \AA$ from the cen-
tre of the bonds. Whether this is evidence of slightly bent bonds is open to speculation.

We thank Dr P. Cremaschi and Dr G. Morosi for their substantial contributions in performing the quantum-mechanical calculations.

References

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65-82.
Destro, R., Pilati, T. \& Simonetta, M. (1975). J. Amer. Chem. Soc. 97, 658-659.
hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D. \& Pople, J. A. (1973). GAUSSIAN 70: Ab Initio SCF-MO Calculations on Organic Molecules. Program No. 236 in QCPE Newsletter 42, Indiana Univ. Chemistry Department, Bloomington, Indiana.
Irngartinger, H., Leiserowitz, L. \& Schmidt, G. M. J. (1970). J. Chem. Soc. (B), pp. 497-504.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Kloster-Jensen, E. \& Wirz, J. (1975). Helv. Chim. Acta, 58, 162-177.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
O'Connell, A. M., Rae, A. I. M. \& Maslen, E. N. (1966). Acta Cryst. 21, 208-219.

Ruysink, A. F. J. \& Vos, A. (1974a). Acta Cryst. A30, 503-506.
Ruysink, A. F. J. \& Vos, A. (1974b). Acta Cryst. A30, 497-502.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1977). B33, 456-462

Structural Studies of Molybdenum-Amino Acid Complexes. The Crystal Structures of Bis- η-cyclopentadienyl-L-prolinatomolybdenum Hexafluorophosphate and Bis- η-cyclopentadienyl-L-leucinatomolybdenum Hexafluorophosphate

By Keith Prout and Stephen R. Critchley
Chemical Crystallography Laboratory, 9 Parks Road, Oxford, OX1 3PD, England
and Elio Cannillo and Vittorio Tazzoli
Centro di Studio per la Cristallografia Strutturale del CNR, dell'Università di Pavia, via Bassi 4, I 27100, Pavia, Italy

(Received 11 June 1976; accepted 16 July 1976)

Abstract

The structures of the title compounds have been determined: (a) L-proline complex, monoclinic, $a=9.842$, $b=9.939, c=8.921 \AA, \beta=100.22^{\circ}$, space group $P 2_{1}$, Mo $K \alpha$ radiation, Philips four-circle diffractometer data, 2919 reflexions, structure determined by Patterson methods and refined by least squares; final $R 0 \cdot 044$; (b) leucine complex, monoclinic, $a=6 \cdot 44, b=10 \cdot 04, c=30 \cdot 05 \AA, \gamma=94 \cdot 1^{\circ}$, space group $P 2 / b$, Mo $K a$ radiation, Hilger \& Watts four-circle diffractometer data, 2135 reflexions, Patterson methods followed by least-squares refinement; final $R 0.061$. In each compound the $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ Mo moiety is chelated by the amino acid through O and N (proline Mo-O $2 \cdot 108$, Mo-N 2.255 ; leucine Mo-O 2.078 , Mo-N $2.215 \AA$). The conformation of the $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}$ (prolinato) cation is consistent with the bulk of the prolinato ligand. In the leucine complex the shape and dimensions of the amino acid ligand are somewhat unsatisfactory possibly owing to disorder.

The presence of Mo in enzyme systems has promoted several crystallographic investigations of Mo-amino acid complexes. The bis- η-cyclopentadienyl compounds of the type $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoX}_{2}$ provide a suitable system for the study of $\mathrm{Mo}^{\mathrm{iv}}$ chemistry and previously we have reported the structures of compounds in which the bidentate chelating ligands X_{2} were the amino acid anions of cysteine, sarcosine and glycine (Prout, Allison, Delbaere \& Gore, 1972). It was demonstrated that $\mathrm{Mo}^{\mathrm{IV}}$ complexed more readily with S than O and that the N-methyl substituent in sarcosine had little effect on the conformation of the complex. Here we report the structures of two further complexes, bis- η -cyclopentadienyl-L-prolinatomolybdenum(IV) hexafluorophosphate and bis- η-cyclopentadienylleucinatomolybdenum(IV) hexafluorophosphate-(?hydrate). The crystals were prepared by Dr M. L. H. Green and his co-workers.
(a) Bis- η-cyclopentadienyl-L-prolinatomolybdenum hexafluorophosphate (MoP)
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{MoNO}_{2} \mathrm{P}, \quad M_{r}=485 \cdot 22$, monoclinic, $a=9.842(3), \quad b=9.939(2), \quad c=8.921(2) \quad \AA$, $\beta=100.22(4)^{\circ}, U=858.8 \AA^{3}, D_{c}=1.88 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$. Space group $P 2_{1}$, systematic extinctions $0 k 0$, $k=2 n+1$. Mo $K \alpha$ radiation, graphite monochromator, $\mu=8.2 \mathrm{~cm}^{-1}$, crystal size 0.18×0.06 $\times 0.70 \mathrm{~mm}$.

The cell dimensions were determined on a Philips PW 1100 diffractometer and refined by a least-squares fit over 25 reflexions. The intensities of a unique set of 3144 reflexions were measured in the range $\theta=2-32^{\circ}$ (total scan range 1.6°, scan rate $0.04^{\circ} \mathrm{s}^{-1}, \omega-2 \theta$ scan mode) of which 225 with $I<\sigma(I)$ were discarded as unobserved. The variation in the absorption of X-rays by the crystal was investigated by ψ scans for 300

[^0]: * Table 4 (structure factors) has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32057 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

